Conditional Directives

7.1 Introduction

The Microsoft Macro Assembler provides two types of conditional direc-
tives. Conditional-assembly directives test for a specified condition and
assemble a block of statements if the condition is true. Conditional error
directives test for a specified condition and generate an error if the condi-
tion is true.

Both kinds of conditional directives only test assembly-time conditions.
They cannot test run-time conditions since these are not known until an
executable program is run. Only expressions that evaluate to constants
during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 8 to understand some of the examples in
this chapter. In particular, conditional directives are frequently used with
the special macro operators described in Section 8.3.

7.2 Conditional-Assembly Directives

The conditional-assembly directives include the following;:

IF

IFE
IF1

IF2
IFDEF
IFNDEF
IFB
IFNB
IFIDN
IFDIF
ELSE
ENDIF

The IF directives and the ENDIF and ELSE directives can be used to

1056

Microsoft Macro Assembler Reference Manual

enclose the statements to be considered for conditional assembly. The con-
ditional block takes the following form:

IF
statements
[ELSE
statements]

ENDIF

The statements following IF can be any valid statements, including other
conditional blocks. The ELSE directive and its statements are optional.
ENDIF ends the block.

The statements in the conditional block are assembled only if the condition
specified by the corresponding IF directive is satisfied. If the conditional
block contains an ELSE directive, only the statements up to the ELSE
directive will be assembled. The statements following the ELSE directive
are assembled only if the IF' condition is not met. An ENDIF directive
must mark the end of any conditional-assembly block. No more than one
ELSE directive is allowed for each IF directive.

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested
ELSE directive always belongs to the nearest preceding IF directive that
does not have its own ELSE.

7.2.1 IF and IFE Directives
Syntax

IF exzpression
IFE ezpression

The IF and IFE directives test the value of an expression. The IF directive
grants assembly if the value of ezpression is true (Ijlonzero). The IFE direc-
tive grants assembly if the value of ezpression is false (0). The expression

must resolve to an absolute value and must not contain forward references.

Example

TE debug
EXTRN dump:FAR
EXTRN trace:FAR
EXTRN breakpoint:FAR
ENDIF

106

Conditional Directives

In this example, the variables within the block will only be declared exter-
nal if the symbol debug evaluates to true (nonzero).

7.2.2 IF'1 and IF2 Directives

Syntax

IF1
IF2

The IF'1 and IF2 directives test the current assembly pass. The IF1 direc-
tive grants assembly only on Pass 1. IF2 grants assembly only on Pass 2.
The directives take no arguments.

Example

IF1

%0UT Beginning Pass 1
ELSE

%OUT Beginning Pass 2
ENDIF

7.2.3 IFDEF and IFNDEF Directives

Syntax

IFDEF name
IFNDEF name

The IFDEF and IFNDEF directives test whether or not the given name
has been defined. The IFDEF directive grants assembly only if name is a
label, variable, or symbol. The IFNDEF directive grants assembly if name
has not yet been defined.

The name can be any valid name. Note that if name is a forward reference,
it is considered undefined on Pass 1, but defined on Pass 2.

Example
IEDEF buffer

bufl DB 10 DUP (?)
ENDIE

107

Microsoft Macro Assembler Reference Manual

In this example, bufl is allocated only if buf fer has been previously
defined. One way to use this conditional block would be to leave buf fer

undefined in the source file and define it if you needed it by using the
Dsymbol option when you start MASM. For example, if the conditional
lock is in test.asm, you could start the assembler with the command

line:
MASM test /Dbuffer:

The symbol buf fer would be defined, and as a result the conditional-
assembly block would allocate buf1. However, if you didn’t need buf1,
you could use the command line:

MASM test:;

7.2.4 IFB and II'NB Directives

Syntax

IFB <<argument>
IFNB <argument>

The IFB and IFINB directives test argument. The IFB directive grants
assembly if argument is blank. The IFNB directive grants assembly if
argument is not blank. The arguments can be any name, number, or
expression. The angle brackets (< >>) are required.

The IFB and IFNB directives are intended for use in macro definitions.
They can control conditional-assembly of statements in the macro, based
on the parameters passed in the macro call. In such cases, argument should
be one of the dummy parameters listed by the MACRO directive.

Example
pushall MACRO regl,reg2,reqg3, reg4, reg5, regb
IENB <regl> ;. If parameter not blank
push regl 3ih push one register and repeat
pushall reg2,reg3,reg4,reg5, regb
ENDIF
ENDM
pushall ax,bx,si,ds
pushall cs,es

108

Conditional Directives

In this example, pushall is a recursive macro that continues to call itself
u_nt.ﬂ it encounters a blank argument. Any register or list of registers (con-
sisting of up to six registers) can be passed to the macro for pushing.

7.2.5 IFIDN and IFDIF Directives

Syntax

IFIDN <argumentl>,<argument2>
IFDIF <argumentl>,<argument2>

The IFIDN and IFDIF directives compare argumenti and argument2. The
IFIDN directive grants assembly if the arguments are identical. The
IFDIF directive grants assembly if the arguments are different. The argu-
ments can be any names, numbers, or expressions. To be identical, each
character in argument! must match the corresponding character in argu-
ment2. Case is significant. The angle brackets (<< >) are required. The
arguments must be separated by a comma (,).

The IFIDN and IFDIF directives are intended for use in macro definitions.
They can control conditional assembly of macro statements, based on the
parameters passed in the macro call. In such cases, the arguments should
be dummy parameters listed by the MACRO directive.

Example

divide MACRO numerator, denominator
IEDEE <denominator>,<0> :: If not dividing by zero
mov ax, numerator I divide AX by BX
mov bx, denominator
div bx :: Result in accumulator
ENDIE
ENDM

divide 6,%test

In this example, a macro uses the IFDIF directive to check against dividing
by a constant that evaluates to 0. The macro is then called, using a per-
cent sign (%) on the second parameter so that the value of the parameter,
rather than its name, will be evaluated. See Section 8.3.4 for a discussion
of the expression (%) operator.

109

Microsoft Macro Assembler Reference Manual

If the parameter test was previously defined with the statement
test EQU 0]

then the condition fails and the code in the block will not be assembled.
However, if the parameter test was defined with the statement

test DW 0

error 42, Constant was expected, will be generated. This is because
the assembler has no way of knowing the run-time value of test.
Remember, conditional directives can only evaluate constants that are
known at assembly time.

7.3 Conditional Error Directives

Conditional error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional error directives to test for boundary condi-
tions in macros.

The conditional error directives, and the errors they produce, are listed in

Table 7.1.

Table 7.1

Conditional Error Directives

Directive Number Message

.ERR1 87 Forced error - passl

.ERR2 88 Forced error - pass2

.ERR 89 Forced error

.ERRE 90 Forced error - expression equals O
.ERRNZ 91 Forced error - expression not egual O
.ERRNDEF 92 Forced error - symbol not defined
.ERRDEF 93 Forced error - symbol defined
.ERRB 94 Forced error - string blank
.ERRNB 95 Forced error - string not blank
.ERRIDN 96 Forced error - strings identical
.ERRDIF 97 Forced error - strings different

110

Conditional Directives

Like other fatal assembler errors, those generated by conditional error
directives cause the assembler to return exit code 7. If a fatal error is
encountered during assembly, MASM will delete the object module. All
conditional error directives except ERR1 generate fatal errors.

7.3.1 .ERR, .ERRI1, and .ERR2 Directives
Syntax

.ERR
.ERR1
.ERR2

The .ERR, .ERR1, and .ERR2 directives force an error at the points at
which they occur in the source file. The .ERR directive forces an error
regardless of the pass, while the . ERR1 and .ERR2 directives force the
error only on their respective passes. The .ERRI1 directive only appears on
the screen or in the listing file if you use the /D option to request a Pass 1
listing. Unlike other conditional error directives, it is not a fatal error.

You can place these directives within conditional-assembly blocks or mac-
ros to see which blocks are being expanded.

Example

IEFDEE dos

ELSE
IFDEF xenix

ELSE

.ERR

ENDIFE
ENDIF

This example makes sure that either the symbol dos or the symbol xenix
is defined. If neither is defined, the nested ELSE condition is assembled
and an error message is generated. Since the .ERR directive is used, an
error would be generated on each pass. You could use the .ERR2 directive
if you wanted only a fatal error, or you could use the .ERR1 directive if
you wanted only a warning error.

111

Microsoft Macro Assembler Reference Manual

7.3.2 .ERRE and .ERRNZ Directives

Syntax

.ERRE ezpression
.ERRNZ ezpression

The .ERRE and .ERRNZ directives test the value of an expression. The
.ERRE directive generates an error if the expression is false (0). The
.ERRNZ directive generates an error if the ezpression is true (nonzero).
The expression must resolve to an absolute value and must not contain for-
ward references.

Example

buffer MACRO count,bname
.ERRE count LE 128 ;: Allocate memory, but
bname DB count DUP (0) ;: no more than 128 bytes
ENDM

buffer 128,bufl ; Data allocated - no error

buffer 129,buf2 : Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count isless than or equal to
128, the expression being tested by the error directive will be true (nonzero)
and no error will be generated. If count is greater than 128, the expres-
sion will be false (0) and the error will be generated.

7.3.3 .ERRDEF and .ERRNDEF Directives

Syntax

JERRDEF name
JERRNDEF name

The .ERRDEF and .ERRNDETF directives test whether or not name has
been defined. The .ERRDEF directive produces an error if name is defined
as a label, variable, or symbol. The .ERRNDEF directive produces an
error if name has not yet been defined. If name is a forward reference, it is
considered undefined on Pass 1, but defined on Pass 2.

112

Conditional Directives

Example

.ERRDEF symbol
TIEDEF configl

.symbol EQU O

ENDIE
IFDEF config2

.symbol EQU 1

ENDIFE
.ERRNDEF symbol

In this example, the .ERRDEF directive at the beginning of the condi-
tional blocks makes sure that symbol has not been defined before entering
the blocks. The .ERRINDETF directive at the end ensures that symbol
was defined somewhere within the blocks.

7.3.4 .ERRB and .ERRNB Directives

Syntax

.ERRB <string>
.ERRNB <string>

The .ERRB and .ERRNB directives test the given string. The .ERRB
directive generates an error if string is blank. The .ERRNB directive gen-
erates an error if string is not blank. The string can be any name, number,
or expression. The angle brackets (< >) are required.

These conditional error directives can be used within macros to test for the
existence of parameters.

Example

work MACRO realarg, testarg
.ERRB <realarg> ;: Error if no parameters
.ERRNB <testarg> ;; Error if more than one parameter
ENDM

113

Microsoft Macro Assembler Reference Manual

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The .ERRB directive generates an
error if no argument is passed to the macro. The .ERRINB directive gen-
erates an error if more than one argument is passed to the macro.

7.3.5 .ERRIDN and .ERRDIF Directives

Syntax

.ERRIDN <stringl>,<string2>
.ERRDIF <stringl >,<string2>

The .ERRIDN and .ERRDIF directives test whether two strings are
identical. The .ERRIDN directive generates an error if the strings are
identical. The .ERRDIF generates an error if the strings are different.
The strings can be names, numbers, or expressions. To be identical, each
character in string? must match the corresponding character in string2.
String checks are case-sensitive. The angle brackets (<< >) are required.

Example

addem MACRO adl,ad2, sum

.ERRIDN <ax>,<ad2> :; Error if ad2 is 'ax'

.ERRIDN <AX>,<ad2> ;; Error if ad2 is 'AX'

mov ax,adl ;2 Would overwrite if ad2 were AX
add ax,ad?2

mov sum, ax :: Sum must be register or memory
ENDM

In this example, the .ERRIDN directive is used to protect against passing
the AX register as the second parameter, because the macro won’t work if
the AX register is passed as the second parameter. Note that the directive
is used twice to protect against the two most likely spellings.

114

Chapter 8

Macro Directives

8.1 Introduction 117

8.2 Macro Directives 117

8.2.1 MACRO and ENDM Directives 118
8.2.2 Macro Calls 121

8.2.3 LOCAL Directive 122

8.2.4 PURGE Directive 123

8.2.5 REPT and ENDM Directives 124
8.2.6 IRP and ENDM Directives 125
8.2.7 IRPC and ENDM Directives 126
8.2.8 EXITM Directive 127

8.3 Macro Operators 128

8.3.1 Substitute Operator 129

8.3.2 Literal-Text Operator 130

8.3.3 Literal-Character Operator 131
8.3.4 Expression Operator 131

8.3.5 Macro Comment 132

116

Maecro Directives

8.1 Introduction

This chapter explains how to create and use macros in your source files. It
discusses the macro directives and the special macro operators. Since mac-
ros are closely related to conditional directives, you may need to review
Chapter 7 to follow some of the examples in this chapter.

Macro directives enable you to write a named block of source statements,
then use that name in your source file to represent the statements. During
assembly, MASM automatically replaces each occurrence of the macro
name with the statements in the macro definition. You can place a block of
statements anywhere in your source file any number of times by simply
defining a macro block once, then inserting the macro name at each loca-
tion where you want the macro block to be assembled. You can also pass
parameters to macros.

A macro can be defined any place in the source file as long as the definition
precedes the first source line that calls that macro. Macros can be kept in a
separate file and made available to the program through an INCLUDE
directive (see Section 9.2).

Often a task can be done by either a macro or procedure. For example, the
Addup procedure shown in Section 3.10 does the same thing as the Addup
macro in Section 8.2.1. Macros are expanded on every occurrence of the
macro name, so they can increase the length of the executable file if called
repeatedly. Procedures take up less space, but the increased overhead of
saving and restoring addresses and parameters can make them slower.

8.2 Macro Directives

The macro directives are listed below:

MACRO
ENDM
LOCAL
PURGE
REPT

117

Miecrosoft Macro Assembler Reference Manual

IRP
IRPC
EXITM

The MACRO and ENDM directives designate the beginning and end of a
macro block. The LOCAL directive lets you define labels used only within
a macro, and the PURGE directive lets you delete previously defined mac-
ros. The EXITM directive allows you to exit from a macro before all the
statements in the block are expanded.

The REPT, IRP, and IRPC directives let you create contiguous blocks of
repeated statements. These repeat blocks are frequently placed within
macros, but they can also be used independently. You can control the
number of repetitions by specifying a number; or by allowing the block to
be repeated once for each parameter in a list; or by having the block
repeated once for each character in a string.

8.2.1 MACRO and ENDM Directives
Syntax

name MACRO [dummyparameter,,,]
statements

ENDM

The MACRO and ENDM directives create a macro having name and con-
taining the given statements.

The name must be a valid name and must be unique. It is used in the
source file to invoke the macro. The dummyparameter is a name that acts
as a placeholder for values to be passed to the macro when it is called. Any
number of dummyparameters can be specified, but they must all fit on one
line. If you give more than one, you must separate them with commas (,).
The statements are any valid MASM statements, including other macro
directives. Any number of statements can be used. The dummy parame-
ters can be used any number of times in these statements.

A macro is “called” any time its name appears in a source file (macro names
in comments are ignored). MASM copies the statements in the macro
definition to the point of the call, replacing any dummy parameters in these
statements with actual parameters passed in the call.

118

Macro Directives

Macro definitions can be nested. This means a macro can be defined within
another macro. MASM does not process nested definitions until the outer
macro has been called. Therefore, nested macros cannot be called until the
outer macro has been called at least once. Macro definitions can be nested
to any depth. Nesting is limited only by the amount of memory available
when the source file is assembled.

Macro definitions can contain calls to other macros. These nested macro
calls are expanded like any other macro call, but only when the outer macro

is called. Macro definitions can also be recursive: they can call themselves,
as illustrated in the example in Section 7.2.4.

Example

addup MACRO adl,ad2, ad3

mov ax, adl :: First parameter in AX
add ax, ad2 :: Add next two parameters
add ax, ad3 i and leave sum in AX
ENDM

The preceding example defines a macro named addup, which uses three
dummy parameters to add three values and leave their sum in the AX
register. The three dummy parameters will be replaced with actual values
when the macro is called.

MASM assembles the statements in the macro only if the macro is called,
and only at the point in the source file from which it is called. Thus, all
addresses in the assembled code will be relative to the macro call, not the
macro definition. The macro definition itself is never assembled.

You must be careful when using the word MACRO after the TITLE,
SUBTTL, and NAME directives. Since the MACRO directive overrides
these directives, placing the word macro immediately after these directives
would cause the assembler to begin to create macros named TITLE,
SUBTTL, and NAME. For example, the line:

TITLE Macro File

may be intended to give an include file the title “Macro File”, but its effect
will be to create a macro called TITLE that accepts the dummy parameter
File. Since there will be no corresponding ENDM directive, an error will

usually result.

To avoid this problem, you should alter the word macro in some way when
using it in a title or name. For example, change the spelling or add an
underline character (MAKRO or _MACRO).

119

Microsoft Macro Assembler Reference Manual

Note

MASM replaces all occurrences of a dummy parameter’s name, even if
you do not intend it to. For example, if you use a register name such as
AX or BH for a dummy parameter, MASM replaces all occurrences of
that register name when it expands the macro. If the macro definition
contains statements that use the register, not the dummy, the macro
will be incorrectly expanded.

Note

Macros can be redefined. You need not purge the first macro before
redefining it. The new definition automatically replaces the old
definition. If you redefine a macro from within the macro itself, make
sure there are no lines between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro. The fol-
lowing example may produce incorrect code:

dostuff MACRO

dostuff MACRO

ENDM
;: Comments or statements not allowed
ENDM

To correct the error, remove the line between the ENDM directives.

120

Macro Directives

8.2.2 Macro Calls
Syntax
name [actualparameter,,,]

A macro call directs MASM to copy the statements of the macro name to
the point of call and to replace any dummy parameters in these statements
with the corresponding actual parameters. The name must be the name of
a macro defined earlier in the source file. The actualparameter can be any
name, number, or other value. Any number of actual parameters can be
given, but they must all fit on one line. Multiple parameters must be
separated by commas, spaces, or tabs.

MASM replaces the first dummy parameter with the first actual parame-
ter, the second with the second, and so on. If a macro call has more actual
parameters than dummy parameters, the extra actual parameters are
ignored. If a call has fewer actual parameters than dummy parameters, any
remaining dummy parameters are replaced with a null (blank) string. You
can use the IFB, IFNB, .ERRB, and .ERRINB directives to have your
macros check for null strings and take appropriate action. See Sections
7.2.4 and 7.3.4.

If you wish to pass a list of values as a single actual parameter, you must
place angle brackets (< >) around the list. The items in the list must be

separated by commas (,).

Examples
allocblock 1,2,3,4.5

The first example passes five numeric parameters to the macro called
allocblock.

allocbklock <1,2,3,4,65>

The second example passes one parameter to allocblock. The parameter
is a list of five numbers.

addup bx, 2., count

121

Microsoft Macro Assembler Reference Manual

The final example passes three parameters to the macro addup. MASM
replaces the corresponding dummy parameters with exactly what is typed
in the macro call parameters. Assuming that addup is the same macro
defined at the end of Section 8.2.1, the assembler would expand the macro
to the following code:

mov ax, bx
add ax, 2
add ax, count

See Section 2.4 of the Microsoft Macro Assembler User’s Guide for an ex-
ample of how macros are shown in listing files.

8.2.3 LOCAL Directive

Syntax
LOCAL dummyname,,,

The LOCAL directive creates unique symbol names for use in macros. The
dummyname is a name for a placeholder that is to be replaced by a unique
name when the macro is expanded. At least one dummyname is required. If
you give more than one, you must separate the names with commas (,). A
dummyname can be used in any statement within the macro.

MASM creates a new actual name for the dummy name each time the
macro is expanded. The actual name has the following form:

P?number

The number is a hexadecimal number in the range 0000 to FFFF. Do not
give other symbols names in this format, since doing so will produce a label
or symbol with multiple definitions. In listings, the dummy name is shown
in the macro definition, but the actual names are shown for each expansion
of the macro.

The LOCAL directive is typically used to create a unique label that will
only be used in a macro. Normally, if a macro containing a label is used
more than once, MASM will display an error message indicating the file
contains a label or symbol with multiple definitions, since the same label
will appear in both expansions. To avoid this problem, all labels in macros
should be dummy names declared with the LOCAL directive.

122

Maero Directives

Note

The LOCAL directive can be used only in a macro definition, and it
must precede all other statements in the definition. If you try to put a
comment line or an instruction before the LOCAL directive, a warning
error will result.

Example

pover MACRO factor, exponent
LOCAL again, gotzero :; Declare symbols for macro
mov cx,exponent ;: Exponent is count for loop
mov ax, 1 ¢y Multiply by 1 first time
j [0 gotzero :: Get out if exponent is zero
mov bx, factor

again: mul bx ;; Multiply until done
loop again

gotzero:
ENDM

In this example, the LOCAL directive defines the dummy names again
and gotzero. These names will be replaced with unique names each time
the macro is expanded. For example, the first time the macro is called,
again will be assigned the name ? 70000 and gotzero will be assigned
?20001. The second time through again will be assigned 770002 and
gotzero will be assigned 2?0003, and so on.

8.2.4 PURGE Directive

Syntax

PURGE macroname,,,

The PURGE directive deletes the current definition of the macro called
macroname. Any subsequent call to that macro causes the assembler to
generate an error.

The PURGE directive is intended to clear memory space no longer needed

by a macro. If macroname is an instruction or directive mnemonic, the
directive name is restored to its previous meaning.

123

Microsoft Macro Assembler Reference Manual

The PURGE directive is often used with a “macro library” to let you
choose those macros from the library that you really need in your source
file. A macro library is simply a file containing macro definitions. You add
this library to your source file using the INCLUDE directive, then remove
unwanted definitions using the PURGE directive.

It is not necessary to PURGE a macro before redefining it. Any
redefinition of a macro automatically purges the previous definition. Also,

any macro can purge itself as long as the PURGE directive is on the last
line of the macro.

Examples

PURGE addup

The first example deletes the macro named addup.
PURGE macl, macZ2, mac9

The second example deletes the macros named macl , mac2 , and mac9.

8.2.5 REPT and ENDM Directives

Syntax

REPT ezpression
statements

ENDM

The REPT and ENDM directives enclose a block of statements to be
repeated ezpression number of times. The expression must evaluate to a
16-bit unsigned number. It must not contain external or undefined sym-
bols. The statements can be any valid statements.

Example

be = 0
REPT 10

X = x + 1
DB %
ENDM

124

Macro Directives

This example repeats the equal-sign (=) and DB directives 10 times. The
resulting statements create 10 bytes of data whose values range from 1 to
10.

8.2.6 IRP and ENDM Directives
Syntax

IRP dummyname, < parameter,,, >
statements

ENDM

The IRP and ENDM directives designate a block of statements to be
repeated once for each parameter in the list enclosed by angle brackets

(< >). The dummyname is a name for a placeholder to be replaced by the
current parameter. The parameter can be any legal symbol, string,
numeric, or character constant. Any number of parameters can be given.

If you give more than one parameter, you must separate them with commas
(;)- The angle brackets (<< >) around the parameter list are required. The
statements can be any valid assembler statements. The dummyname can be
used any number of times in these statements.

When MASM encounters an IRP directive, it makes one copy of the state-
ments for each parameter in the enclosed list. While copying the state-
ments, it substitutes the current parameter for all occurrences of dum-
myname in these statements. If a null parameter (< >) is found in the list,
the dummy name is replaced with a null value. If the parameter list is
empty, the IRP directive is ignored and no statements are copied.

Example

IRP x,<0,1,2,3,4,5,6,7,8,9>
DB 10 DUP (x)
ENDM

This example repeats the DB directive 10 times, duplicating the numbers in
the list once for each repetition. The resulting statements create 100 bytes
of data with the values 0 through 9 duplicated 10 times.

126

Microsoft Macro Assembler Reference Manual

Notes

Assume an IRP directive is used inside a macro definition and the
parameter list of the IRP directive is also a dummy parameter of the
macro. In this case, you must enclose that dummy parameter within
angle brackets. For example, in the following macro definition, the
dummy parameter x is used as the parameter list for the IRP directive:

alloc MACRO 5%
IRP Y., <x>
DB Y
ENDM
ENDM

If this macro is called with
alloc <0,1,2.3,4,5,6,7.8,9>

the macro expansion becomes

IRP y.<0,1,2,3,4,5,6,7.8,9>
DB Y
ENDM

The macro removes the brackets from the actual parameter before
replacing the dummy parameter. You must provide the angle brackets
for the parameter list yourself.

8.2.7 IRPC and ENDM Directives
Syntax

IRPC dummyname,string
statements

ENDM

The IRPC and ENDM directives enclose a block of statements that is
repeated once for each character in string. The dummyname is a name for a
placeholder to be replaced by the current character in the string. The
string can be any combination of letters, digits, and other characters. The
string should be enclosed with angle brackets (< >) if it contains spaces,

126

Macro Directives

commas, or other separating characters. The statements can be any valid
assembler statements. The dummyname can be used any number of times
in these statements.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences of dummyname in
these statements.

Example

IRPC x,0123456789
DB x * 1
ENDM

This example repeats the DB directive 10 times, once for each character in
the string 0123456789. The resulting statements create 10 bytes of data
having the values 1 through 10.

8.2.8 EXITM Directive

Syntax
EXITM

The EXITM directive tells the assembler to terminate macro or repeat-
block expansion and continue assembly with the next statement after the
macro call or repeat block. The EXITM directive is typically used with
IF directives to allow conditional expansion of the last statements in a
macro or repeat block.

When EXITM is encountered, the assembler exits the macro or repeat
block immediately. Any remaining statements in the macro or repeat block
are not processed. If EXITM is encountered in a macro or repeat block
nested in another macro or repeat block, MASM returns to expanding the

outer level block.

127

Microsoft Macro Assembler Reference Manual

Example

alloc MACRO times

x =

REPT times
IFE
EXITM
ELSE
DB
ENDIF

x —

ENDM

ENDM

: Repeat up to 256 times

Does x = 255 yet?
If so, quit

:: Else allocate x

Increment x

This example defines a macro that creates no more than 255 bytes of data.
The macro contains an IFE directive that checks the expression x-OFFh.
When this expression is 0 (x equal to 255), the EXITM directive is pro-
cessed and expansion of the macro stops.

8.3 Macro Operators

The macro and conditional directives use the following special set of macro

operators:
Operator Definition
& Substitute operator
<> Literal-text operator
! Literal-character operator
% Expression operator
5 Macro comment

When used in a macro definition or a conditional-assembly directive, these
operators carry out special control operations, such as text substitution.
They are described in Sections 8.3.1-8.3.5.

128

Macro Directives

8.3.1 Substitute Operator
Syntax

& dummyparameter

or

dummyparameter&

The substitute operator (&) forces MASM to replace dummyparameter
with its corresponding actual parameter value. The operator is used any-
where a dummy parameter immediately precedes or follows other charac-
ters, or whenever the parameter appears in a quoted string.

Example

errgen MACRO Vi

error&x DB '"Error &y - &x'
ENDM

In the example above, MASM replaces &x with the value of the actual
parameter passed to the macro errgen. If the macro is called with the

statement
errgen 1,wait
the macro is expanded to

errorwait DB '"Error 1 - wait'

129

Microsoft Macro Assembler Reference Manual

Note

For complex, nested macros, you can use extra ampersands (&) to delay
the actual replacement of a dummy parameter. In general, you need to
supply as many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute operator
is used twice with = to make sure its replacement occurs while the IRP

directive is being processed:

alloc MACRO X
IRP z,<1,2,3>
x&&z DB z
ENDM
ENDM

In this example, the dummy parameter x is replaced immediately when
the macro is called. The dummy parameter z, however, is not replaced
until the IRP directive is processed. This means the parameter is
replaced once for each number in the IRP parameter list. If the macro
is called with

alloc var

the expanded macro will be

varl DB 1
var2 DB 2
var3 DB 3

8.3.2 Literal-Text Operator
Syntax

< texli>

The literal-text operator directs MASM to treat text as a single literal ele-
ment regardless of whether it contains commas, spaces, or other separators.
The operator is most often used with macro calls and the IRP directive to

ensure that values in a parameter list are treated as a single parameter.

130

Macro Directives

The literal text operator can also be used to force MASM to treat special
characters such as the semicolon (;) or the ampersand (&) literally. For
example, the semicolon inside angle brackets <(;> becomes a semicolon,
not a comment indicator.

MASM removes one set of angle brackets each time the parameter is used

in a macro. When using nested macros, you will need to supply as many
sets of angle brackets as there are levels of nesting,.

8.3.3 Literal-Character Operator

Syntax

Ycharacter

The literal-character operator forces the assembler to treat character as a
literal character. For example, you can use it to force MASM to treat spe-

cial characters such as the semicolon (;) or the ampersand (&) literally.
Therefore, !; is equivalent to <;>.

8.3.4 Expression Operator
Syntax

Cotext

The expression operator (%) causes the assembler to treat text as an
expression. MASM computes the expression’s value, using numbers of the
current radix, and replaces text with this new value. The fext must
represent a valid expression.

The expression operator is typically used in macro calls where the program-
mer needs to pass the result of an expression to the macro instead of to the

actual expression.

131

Microsoft Macro Assembler Reference Manual

Example

printe MACRO msg, num

TE2 ;; On pass 2 only
souT * &msg&num * ;; Display message and number
ENDIF e to screen
ENDM
syml EQU 100
sym2 EQU 200
printe <syml + sym2 = >,%(syml + sym2) : Macro call

In this example, the macro call
printe <syml + sym2 = >,%(syml + sym2)

passes the text literal syml + sym2 = to the dummy parameter msqg. It
passes the value 300 (the result of the expression syml + sym2) to the
dummy parameter num. The result is that MASM displays the message
syml4+sym2==300 when it reaches the macro call during the assembly.
The Z6OUT directive, which sends a message to the screen, is described in
Section 9.4 and the IF2 directive is described in Section 7.2.2.

8.3.5 Macro Comment
Syntax
s3lext

A macro comment is any text in a macro definition that does not need to be
copied in the macro expansion. All fext following the double semicolon (53)
is ignored by the assembler and will appear only in the macro definition
when the source listing is created.

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in macro expan-
sions depends on the use of the .LALL, .XALL, and .SALL directives
described in Section 9.11.

132

