
Conditional Directiwes

7.1 Introduction

The Microsoft Macro Assembler provides two types of conditional direc-
tives. Conditional-assembly directives test for a specified condition and
assemble a block of statements if the condition is true. Conditional error
directives test for a specified condition and generate an error if the condi-
tion is true.

Both kinds of conditional directives only test assembly-time conditions.
They cannot test run-time conditions since these are not known until an
executable program is run. Only expressions that evaluate to constants
during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 8 to understand some of the examples in
this chapter. In particular, conditional directives are frequently used with
the special macro operators described in Section 8.3.

7.2 Conditional-Assernbly Directives

106

The conditional-assembly directives include the following:

Ir'
IFE
m1
IF2
Itr'DEF

IFNDEF
IFB
Itr'NB
IFIDN
IFDIF
ELSE

ENDIF

The IF directives and the ENDIF and ELSE directives can be used to

Mcrosoft Macro Assembler Beference Manual

enclose the statements to be considered for conditional assembly. The con-
ditional block takes the following form:

IF
sto,temetuts

IELSE
etatementsl
ENDIT'

The statements following IF can be any valid statements, including other
conditional blocks. The ELSE directive and, ibs statemenls are optional.
ENDIF ends the block.

The statements in the conditional block are assembled only if the condition
speciffed by the corresponding IF directive is satisffed. If the conditional
block contains an ELSE directive, only the statements up to the ELSE
directive will be assembled. The statements following the ELSE directive
are assembled only if the IF condition is not met. An ENDIF directive
must mark the end of any conditional-assembly block. No more than one
ELSE directive is allowed for each IF directive.

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested
ELSE directive always belongs to the nearest preceding IF directive that
does not have its own ELSE.

7.2.L IF and IFE Directives

Syntax

Example

lF expresaion
IFE eupresai,on

The IF and IFE directives test the value ol zn expression. The IF directive
grants assembly if the value of etpression is true (nonzero). The Itr'E direc-
tive grants assembly if the value of erpression is false (0). The erpression
must resolve to an absolute value and must not contain'forward ieferences.

debug
EXTRN dump: FAR
EXTRN trace: FAR
EXIRN breakpoint I FAR

loB

ENDI F

]F

Conrlitionrl I)ireef,iwes

IE1

ELSE

ENDIF

In this example, the variables within the block will only be declared exter-
nal if the symbol debug evaluates to true (nonzero).

7.2.2 IFI and IF2 Directives

Syntax

IFl
IF2

The IFl and IF2 directives test the current assembly pass. The IFI direc-
tive grants assembly only on Pass 1. IF2 grants assembly only on Pass 2.
The directives take no arguments.

Exarnple

%OUT Beginning Pass 1

IOUT Beginning Pass 2

7.2.3 IFDEF and IFNDEF Directives

Syntax

IFDEF aome
IFNDEF zome

The IFDEF and IFNDEF directives test whether or not the given name
has been defined. The IFDEF directive grants assembly only if zame is a
label, variable, or symbol. The IFNDEF directive grants assembly if nome
has not yet been defined.

The name can be any valid name. Note that it name is a forward reference,
it is considered undefined on Pass l, but defined on Pass 2.

Exarnple

I EDEE

END] F

buffer
bufl DB 10 DUP (?)

107

Microaoft Macro Assembler Reference Manual

In this example, bu f1 is allocated only if bu f fer has been previously
defined. One way to use this conditional block would be to Ieave buffer
undefined in the source file and define it if you needed it by using the
f Dsumbol opiion when you start MASM. For example, if the conditional
block is in test . asm, you could start the assembler with the command
line:

MASM test /Dbuffer:

The symbol buffer would be defined, and as a result the conditional-
assembly block would allocate buf1. However, ifyou didn't need buf1,
you could use the command line:

MASM test;

7.2.4 IFB and IFNB Directives

Syntax

IFB largument7
IFNB (orguzneal)

The IFB and IFNB directives Lest argument. The IFB directive grants
assembly if argument is blank. The IFNB directive grants assembly if
argurnent is not blank. The arguments can be any name, number, or
expression. The angle brackets (< >)are required.

The IFB and IFNB directives are intended for use in macro definitions.
They can control conditional-assembly of statements in the macro, based
on the parameters passed in the macro call. In such cases, crgument should
be one of the dummy parameters listed by the MACRO directive,

Example

pushal l regl, reg2, reg3 ,r e94, re95, re96
<reg1> l; If parameter not blank
push re91 ;; plrsh one reglster and repeat
pusha 1 I reg2 , reg3, re94, regs, reg6

ENDIE
EIVDM

pushall
pushal l

108

MACRO
IFNB

In this example, pushal l is a recursive macro that continues to call itself
until it encounters a blank argument. Any register or list of registers (con-
sisting of up to six registers) can be passed to the macro for pushing.

Conditional Directivee

Result.in accumul ator

7.2.5 IFIDN and IFDIF Directives

Syntax

IFIDN (orgumezt 1 >, < o.r gument?>
lF DIF 1 ar g ume nt 1), 1 ar g ume nt 2)

The IFIDN and IFDIF directives compare argumentl and argument2. The
Itr'IDN directive grants assembly if the arguments are identical. The
IFDIF directive grants assembly if the arguments are different. The argu-
ments can be any names, numbers, or expressions. To be identical, each
character in argumentl must match tlre corresponding character in orgu-
ment2. Case is significant. The angle brackets (()) are required. The
argumenLs must be separated by a comma (,).

The IFIDN and IFDfF directives are intended for use in macro definitions.
They can control conditional assembly of macro statements, based on the
parameters passed in the macro call. In such cases, the arguments should
be dummy parameters listed by the MACRO directive.

If not dividinq by zero
divide AX by BX

MACRO
IFDIF
mov
mov
div
ENDl F
ENDM

numerator, denominator
<denominator>, <O> : :
ax, numerator i :
bx. denominator
bx ,:

divide 6,%tesL

In this example, a macro uses the IFDIF directive to check against dividing
by a constanl that evaluates to 0. The macro is then called, using a per-
cent sign lTol on Lhe second parameter so that the value of the parameter,
rather than its name. will be evaluated. See Section 8.3.4 for a discussion
of the expression 125\ operator.

10s

Exarnple

divide

If the parameter test was previously defined with the statement

F/.]II
'

then the condition fails and the code in the block will not be assembled.
However, if the parameter test was defined with the statement

Dt^/test o

error 42, Constant was expected, will be generated. This is because
the assembler has no way of knowing the run-time value ol test.
Remember, conditional directives can only evaluate constants that are
known at assembly time.

Conditional error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional error directives to test for boundary condi-
tions in macros.

The conditional error directives, and the errors they produce, are listed in
Table 7.1.

Table 7.1

Conditional Error Directives

Directive Number Message

87
88
89
90
91
92
93
94
95
96
97

Forced
Forced
Forced
Eorced
F orced
F or ced
E or ced
E orc ed
F orced
F or ced
Forced

error
error
error
error

err or
error
error
error
error
error

- pass 1
- pass 2

expression equals O

expression not equal O

symbol not defined
symbol deflned
strinq bl ank
string not bl ank
strings identica 1

strings di fferent

1ro

Microgoft Macro A.ssembler Reference Manual

7,3 Conditional Error Directives

.ERRl

.ERR2

.ERR

.ERRE

.ERRNZ

.ERRNDET'

.ERRDDF

.ERRB

.ERRNB

.ERRIDN

.ERRDIF

Like other fatal assembler errors, those generated by conditional error
directives cause the assembler to return exit code 7. If a fatal error is
encountered during assembly, MASM will delete the object module. All
conditional error directives except ERR1 generate fatal errors.

7.3.1 .ERR, .ERR1, and.ERR2 Directives

Syntax

Exarnple

IFDEE dos

ELSE

.ERR

.ERR1

.ERR2

The.ERR, .ERRI, and .ERR2 directives force an error at the points at
which they occur in the source file. The .ERR directive forces an error
regardless of the pass, while the .ERRI and .ERR2 directives force the
error only on their respective passes. The .ERR1 directive only appears on
the screen or in the listing file if you use the /D option to request a Pass I
listing. Unlike other conditional error directives, it is not a fatal error.

You can place these directives within conditional-assembly blocks or mac-
ros to see which blocks are being expanded.

Conditional Directives

IFDEE xeni x

ELSE
. ERR
ENDI F

END] F

This example makes sure that either the symbol dos or the symbol xenix
is defined.

-
If neither is defined, the nested ELSE condition is assembled

and an errot message is generated. Since the .ERR directive is used, an
-

error would be genelateJ on each pass' You could use the .ERR2 directive
if you wanted only a fatal error, or you could use the .ERRI directive if
you wanted only a warning error.

111

MicroeollL Macro A-seembler Reference Manual

7.3.2 .ERRE and .ERRNZ Directives

Syntax

.ER'R.E erpression

.ERRNZ ezpression

The .ERRE and .ERRNZ directives test the value ol an erpression. The
.ERRE directive generates an eror if the expressionis false (0). The
.ERRNZ directive generates an error if the ezpression is true (nonzero).
The expression must resolve to an absolute value and must not contain for-
ward references.

Example

buffer MACRO
. ERRE
bname
ENDM

count, bname
count LE 128 ::
DB count DUP (O) ;;

A] l ocate memory, but
no more than 128 bytes

buffer 128, bufl
buffer 729.buf2

Data al located
Error generated

no error

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro bu f fer , If count is less than or equal to
128, the expression being tested by the error directive will be true (nonzero)
and no error will be generated. If count is greater than 128, the expres-
sion will be false (0) and the error will be generated.

7.3.3 .trRRDEF and .ERRNDM,' Directives

Syntax

LLz

.ERRDEF ruome

.ERRNDEF narne

The .ERRDEF and .ERRNDEF directives test whether or not zame has
been defined. The .ERRDEF directive produces an error if zarze is defined
as a label, variable, or symbol. The .ERRNDEF directive produces an
enor if namehas not yet been defined. ll name is a forward reference, it is
considered undefined on Pass 1. but defined on Pass 2-

Exarnple

. ERRDEF
IFDEE

symbol
con figl

cotlf i92

.symbol EQU 1

7.3.4 .ERRB and .ERRNII Directives

Syntax

.ERRB (string)

.ERRNB 4string)

Exarnple

Conditional Directives

no parameters
more than one parameter

. symbol EQU O

END] E
IEDEF

END]F
. ERRNDEF symbol

In this example, the .ERRDEF directive at the beginning of the condi-
tional blocks makes sure that syrnbol has not been defined before entering
the blocks. The ,ERRNDEF directive at the end ensures that symbol
was defined somewhere within the blocks.

The .ERRB and .ERRNB directives test the given strr'ng. The ,ERRB
directive generates an error if string is blank. The .ERRNB directive gen-
erates an error if srrirrg is not blank. The string can be any name, number,
or expression. The angle brackets (< >) are required.

These conditional error directives can be used within macros to test for the
existence of parameters.

work I4ACRO rea I arg. testarg
. EPRB . rea 1 arg. : '
.ERRNB'testarg.

Error
Error

if
if

ENDM

113

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The.ERRB directive generates an
error if no argument is passed to the macro. The .ERRNB directive gen-
erates an error if more than one argument is passed to the macro.

7.3.5 .trRRIDN and .trRRDIl' Directives

Synta:<

,ERRIDN { string 1}, { s tringg)
.ERRDIF 1 string 1), I stringg)

The .ERRIDN and .ERRDIF directives test whether two strings are
identical. The .ERRIDN directive generates an error if the strings are
identical. The .ERRDIF generates an error if the strings are diflerent.
The strings can be names, numbers, or expressions. To be identical, each
character in stringl must match the corresponding character in stringZ.
String checks are case-sensitive. The angle brackets (< >) are required.

Exarnple

addem
Error if ad2 is 'ax'
Error if ad2 is 'A.X'
Would overwrite if ad2 were AX

Sum must be register or memory

In this example, the .ERRIDN directive is used to protect against passing
the AX register as the second parameter, because the macro won't work if
the AX register is passed as the second parameter. Note that the directive
is used twice to protect against the two most likely spellings.

tt4

Mcrosoft Macro Assembler Reference Manual

MACRO ad1, ad2, sum
.ERRIDN <ax>, <ad2> ::
. ERRIDN <AX>, <ad2> i;
nov ax, ad1 ; :
add ax, ad2
mov sum, ax i i
ENDM

Chapter 8
Macro Directives

8.1

8.2

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.2.8

8.3

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

116

Introduction ll7
N4acro Drectives Ll7

IVfACRO and trNDM Drectives 118

Ivlacro Calls l2l
LOCAL Directive 122

PI-IRGE Drective 123

REFT and ENDM Directives t24
IRP and ENDM Directives 125

IRPC and ENDM Directives 126

DUTMDirective L27

N4acro Operators L28

SubstituteOperator 129

Literal-TextOperator 130

Literal-CharacterOperator 131

kpression Operator 131

Macro Comment L32

Macro Directives

8.1 Introduction

This chapter explains how to create and use macros in your source files. It
discusses the macro directives and the special macro operators. Since mac-
ros are closely related to conditional directives, you may need to review
Chapter 7 to follow some of the examples in this chapter.

Macro directives enable you to wribe a named block of source statements,
then use that name in your source file to represent the statements. During
assembly, MASM automatically replaces each occurrence of the macro
name with the statements in the macro definition. You can place a block of
statements anywhere in your source file any number of times by simply
defining a macro block once, then inserting the macro name at each [oca-
tion where you want the macro block to be assembled. You can also pass
parameters to macros.

A macro can be defined any place in the source file as long as the definition
precedes the first source line that calls that macro. Macros can be kept in a
separate file and made available to the program through an INCLUDE
directive (see Section 9.2).

Often a task can be done by either a macro or procedure. For example, the
Addup procedure shown in Section 3.10 does the same thing as the Addup
macro in Section 8,2.1. Macros are expanded on every occurrence of the
macro name, so they can increase the length of the executable file if called
repeatedly. Procedures take up less space, but the increased overhead of
saving and restoring addresses and parameters can make them slower.

8.2 Macro Directives

tL7

The macro directives are listed below:

MACRO
ENDM
LOCAI
PURGE
REPT

Microsofb Mscro Assembler Reference Manual

IRP
IRPC
E)(ITM

The MACRO and ENDM directives designate the beginning and end of a
macro block. The LO CAJ. directive lets you define labels used only within
a macro, and the PURGE directive lets you delete previously defined mac-
ros. The E)OTM directive allows you to exit from a macro before all the
statements in the block are expanded.

The REPT, IRP, and IRPC directives let you create contiguous blocks of
repeated statements. These repeat blocks are frequently placed within
macros, but they can also be used independently. You can control the
number of repetitions by specifying a number; or by allowing the block to
be repeated once for each parameter in a list; or by having the block
repeated once for each character in a string.

A.2.1 MACR.O a.nd ENDM Directives

Syntax

nome MACRO fidummy p or ame t er r r,l
statemetuts
ENDM

The MACRO and ENDM directives create a macro having name and con-
taining the given statements.

The name must be a valid name and must be unique. It is used in the
source file to invoke the macro. The dummgparameler is a name that acts
as a placeholder for values to be passed to the macro when it is called. Any
number of dummyparameters can be specified, but they must all fit on one
line. Ifyou give more than one, you must separate them with commas (,).
The statements are any valid MASM statements, including other macro
directives. Any number of statements can be used. The dummy parame-
ters can be used any number of times in these statements.

A macro is "called" any time its name appears in a source file (macro names
in comments are ignored). MASM copies Lhe statements in Ihe macro
definition to the poinb of the call, replacing any dummy parameters in these
statements with actual parameters passed in the call.

118

Macro Directives

Macro definitions can be nested. This means a macro can be defined within
another macro. MASM does not process nested definitions until the outer
macro has been called. Therefore, nested macros cannot be called until the
outer macro has been called at least once. Macro definitions can be nested
to any depth. Nesting is limited only by the amount of memory available
when the source file is assembled.

Macro definitions can contain calls to other macros. These nested macro
calls are expanded like any other macro call, but only when the outer macro
is called. Macro definitions can also be recursive: they can call themselves,
as illustrated in the example in Section 7.2.4.

Exarnple

addup
First parameter in AX
Add next two parameters

and leave sum in AX

The preceding example defines a macro named addup, which uses three
dummy parameters to add three values and leave their sum in the AX
register. The three dummy parameters will be replaced with actual values
when the macro is called.

MACRO
mov
add
add
ENDM

ad1, ad2 , ad3
ax, ad1
ax, ad2
ax, ad3

MASM assembles the statements in th€ macro only if the macro is called,
and only at the point in the source file from which it is called. Thus, all
addresses in the assembled code will be relative to the macro call, not the
macro definition. The macro definition itself is never assembled.

You must be careful when using the word MACRO after the TITLE,
SUBTTL, and NAME directives. Since the MACRO directive overrides
these directives, placing the word macro immediately after these directives
would cause the assembler to begin to create macros named TITLE,
SUBTTL, and NAME. For example, the line:

TTTLF Macro Fi 1e

may be intended to give an include file the title "Macro File", but its effect
will be to create a macro called TITLE that accepts the dummy parameter
Fi 1e. Since there will be no corresponding ENDM directive, an error will
usually result.

To avoid this problem, you should alter the word macro in some way when
using it in a title or name. For example, change the spelling or add an
underline character (mxno or MACRO).

119

Microsoft Macro Assembler Referencc Manual

Note

Note

MASM replaces all occurrences of a dummy parameter's name, even if
you do not intend it to. For example, if you use a register name such as
AX or BH for a dummy parameter, MASM replaces all occurrences of
that register name when it expands the macro. If the macro definition
contains statements that use the register, not the dummy, the macro
will be incorrectly expanded.

Macros can be redefined. You need not purge the first macro before
redefining it. The new definition automatically replaces the old
definition. If you redefine a macro from within the macro itself, make
sure there are no lines between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro. The fol-
lowing example may produce incorrect code:

dostrr ff MACRo

dostu f f MACRO

ENDM
;; Coments or statements not alloved
ENDM

To correct the error, remove the line between the ENDM directives

120

Macro Directivee

8.2.2 Macro Calls

Synta.x

n ame laclualp ar amet er r r rl

A macro call directs MASM to copy the statements of the macro zame to
the point of call and to replace any dummy parameters in these statements
with the corresponding actual parameters. The name must be the name of
a macro defined earlier in the source file. The actualparameter can be any
name, number, or other value. Any number of actual parameters can be
given, but they must all fit on one line. Multiple parameters must be
separated by commas, spaces, or tabs.

MASM replaces the first dummy parametet with the first actual parame-
ter, the second with the second, and so on. If a macro call has more actual
parameters than dummy parameters, the extra actual parameters are
ignored. If a call has fewer actual parameters than dummy parameters, any
remaining dummy parameters are replaced with a null (blank) string. You
can use the IFB, If'NB, .ERRB, and .ERRNB directives to have your
macros check for null strings and take appropriate action. See Sections
7 .2.4 and. 7 .3.4.

If you wish to pass a list of values as a single actual parameter, you must
place angle brackets (())around the list. The items in the list must be
separated by commas (,).

Examples

al locblock L,2,3,4,5

The first example passes five numeric parameters to the macro called
a11ocb1ock.

allocblock <1, 2, 3, 4, 5>

The second example passes one parameter to a1locb1ock. The parameter
is a list of five numbers.

addup bx, 2, count

tzL

ivlicrogofi Macro Assembler Reference Manual

The final example passes three parameters to the macro addup . MASM
replaces the corresponding dummy parameters with exactly what is typed
in the macro call parameters. Assuming that addup is the same macro
defined at the end of Section 8.2.1, the assembler would expand the macro
to the following code:

ax,
ax,
ax,

bx
2
count

See Section 2.4 of the Microsolt Macro Assembler User's Guid.e for at ex-
ample of how macros are shown in listing files.

8.2.3 LOCAL Directive

Synta:r

LOCAL d.ummynamertt

The LOCAI directive creates unique symbol names for use in macros. The
dummyname is a name for a placeholder that is to be replaced by a unique
name when the macro is expanded. At least one d.ummyname is required. If
you give more than one, you must separate the names with commas (,). A
dummgname can be used in any statement within the macro.

MASM creates a new actual name for the dummy name each time the
macro is expanded. The actual name has the following form:

??number

The aumber is a hexadecimal number in the range 0000 to FFFF. Do not
give other symbols names in this format, since doing so will produce a label
or symbol with multiple definitions. In listings, the dummy name is shown
in the macro definition, but the actual names are shown for each expansion
of the macro.

The LOCAJ, directive is typically used to create a unique label that will
only be used in a macro. Normally, if a macro containing a label is used
more than once, MASM will display an error message indicating the file
contains a label or symbol with multiple definitions, since the same label
will appear in both expansions. To avoid this problem, all labels in macros
should be dummy names declared with the LOCAI directive.

t22

mov
add
add

Macro Directives

The LOCAI, directive can be used only in a macro definition, and it
must prccede all other statements in the definition. If you try to put a
comment line or an instruction before the LOCAL directive, a warning
error will result.

Example

power MACRO
LOCAL

nov
icxz
mov
mu1
I oop

Declare symbols for macro
Exponent is count for loop
Multiply by 1 first time
Cet out if exponent is zero

Multiply unti 1 done

ENDM

In this example, the LOCAL directive defines the dummy names aga in
and gotzero. These names will be replaced with unique names each time
the macro is expanded. For example, the first time the macro is called,
again will be assigned the name ??oooo and gotzeyo will be assigned
??ooo1. The second time through agaj-n will be assigned ??ooo2 and
gotzero will be assigned ? ?ooo3, and so on.

8.2.4 PIIRGE Directive

Syntax

PURGE macronafieerrr

The PURGE directive deletes the current definition of the macro called
macroname. Any subsequent call to that macro causes the assembler to
generate an effor.

The PURGE directive is intended to clear memory space no longer needed
by a macro. lf macroname is an instruction or directive mnemonic, the
directive name is restored to its previous meaning'

L2A

Note

again:

goLzer a i

factor, exponent
again, gotzero : :
cx, exponent :)
ax,1 i :
goLzero ::
bx, factor
bx :;
again

The PURGE directive is often used with a "macro library" to let you
choose bhose macros from the library that you really need in your source
file. A macro library is simply a fiIe coniaining macro definitions. You add
this library to your source file using the INCLUDE directive, then remove
unwanted definitions using the PURGE directive.

It is not necessary to PURGE a macro before redefining it. Any
redefinibion of a macro automatically purges the previous definition. Also,
any macro can purge itself as long as the PURGE directive is on the last
line of the macro.

Examples

PURCE addup

The first example deletes the macro named addup.

PURGE mac1, mac2, mac9

The second example deletes the macros named macl , mac2 , and mac9.

8.2.5 RtrPT and trNDM Directives

Syntax

R.EPT erpression
statemetuts
ENDM

The REPT and ENDM directives enclose a block of sfolemenls to be
repeated erpression number of times. The expression must evaluate to a
l6-bit unsigned number. It must not contain external or undefined sym-
bols. The statements can be any valid statements.

Exarnple

1

o
10

x

x
REPT

124

DB
E NDM

Microsoft Macro Assernbler Reference Manual

Macro Directives

This example repeats the equal-sign (:) and DB directives 10 times. The
resulting statements create l0 bytes of data whose values range from I to
10.

8.2.6 IRP and ENDM Dirt:ctives

Syntax

The IRP and ENDM directives designate a block of statements to be
repeated once for each parameter in the list enclosed by angle brackets
(< >). The dummyname is a name for a placeholder to be replaced by the
currett pararneter. The parameter can be any legal symbol, string,
numeric, ot character constant. Any number of parameters can be girren.
If you give more than one parameter, you must separate them with commas
(r). The angle brackets (()) around the parameter list are required. The
statements can be any valid assembler statements. The d.ummyname canbe
used any number of times in these statements,

When MASM encounters an IRP directive, it makes one copy of the state-
ments for each parameter in the enclosed list. While copying the state-
ments, it substitutes the current parameter for all occurrences ol dum-
myname in these statements. If a null parameter (< >) i. found in the list,
the dummy name is replaced with a null value. If the parameter list is
empty, the IRP directive is ignored and no statements are copied.

Exarnple

x, <O, l, 2, 3, 4, 5, 5, 7, 8, 9>
DB 10 DUP (x)

IRP

ENDM

This example repeats the DB direciive 10 times, duplicating the numbers in
the list once for each repetition. The resulting statements create 100 bytes
of data with the values 0 through 9 duplicabed l0 times.

126

IF"P d,ummy narne, < p ar amete r r r r>
etatemenls
ENDM

Mcrosoft Macro Aasembler Reference Manual

Notes

Assume an IRP directive is used inside a mamo definition and the
parameter list of the IRP directive is also a dummy parameter of the
macro. In this case, you must enclose that dummy parameter within
angle brackets. For example, in the following macro definition, the
dummy parameter x is used as thc parameter list for the IRP directive:

al loc MACRO
]RP
DB
ENDM
ENDM

x
y,<x>
v

The macro removes the brackets from the actual parameter before
replacing the dummy parameter. You must provide the angle brackets
for the parameter list yourself.

8.2.7 IRPC and ENDMDirectives
Syntax

IR'P C d,ummy namer strin g
statements
ENDM

The IRPC and ENDM directives enclose a block of statemenls that is
repeated once for each character in string. "the d,ummyname is a name for a
placeholder to be replaced by the current character in the string. The
string can be any combination of letters, digits, and other charicters. The
string should be enclosed with angle brackets (< >) il it contains spaces,

If this macro is called with

al loc <O,1, 2,3,4,5,6,'l ,8,9>

the macro expansion becomes

IRP y, <O ,7 , 2 , 3, 4. 5 , 6 ,7 .8,9>
DBv
E NDM

t2B

IRPC

ENDM

x,oL23456789
DB x+1

This example repeats the DB directive 10 times, once for each character in
the string 0123456189. The resulting statements create 10 bytes of data
having the values 1 through 10.

Maero Direetiwes

commas, or other separating characters. The statements can be any valid
assembler statements. The dummyname can be used any number of times
in these statements.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences ol dummgname in
these statements.

Exarnple

8.2.8 EXITM Directive

Syntax

E)(ITM

The E)CTM directive tells the assembler to terminate macro or rePeat-
block expansion and continue assembly with the next statement after [he
rnu"ro .ill or repeat block. The EXITM directive is typically used with
IF directives to-allow conditional expansion of the last statements in a
macro or repeat block.

When E) TM is encountered, the assembler exits the macro or repeat
block immediately. Any remaining statements in the macro or repeab block
are not processed. If E1UTM is encountered in a macro or repeat b.lock.
nested in another macro or repeat block, MASM returns to expanding the
outer level block.

t27

Mcroeoft Macro Agsembler Reference Manual

Exarnple

a11oc MACRO times
x- o

;; Repeat up to 256 times
x OFFh :: Does x = 255 yet?

;; 1f so, quit
REPT times

lFE
EXITM
ELSE
DB
ENDIF

ENDM
ENDM

This example defines a macro that creates no more than 255 bytes of data.
The macro contains an IFE directive that checks the expression x-OFFh.
When this expression is 0 (x equal to 255), the E)IITM directive is pro-
cessed and expansion of the macro stops.

8.3 lMacro Operators

The macro and conditional directives use the following special set of macro
operators:

Operator Definition

& Substitute operator

! Literal-character operator

% Expression operator

;t Macro comment

When used in a macro definition or a conditional-assembly directive, these
operators carry out special control operations, such as teit substitution.
They are described in Sections 8.3.1-8.3.5.

128

;; Else al locate x

x + 1 :: Increment x

Macro Directives

8.3.1 Substitute Operator

Syntax

&d,ummyparameter

OI

d,umrny parameter&

The substitute operator (&) forces MASM to replace dummyparameter
with its corresponding actual parameter value. The operator is used any-
where a dummy parameter immediately precedes or follows other charac-
ters, or whenever the parameter appears in a quoted string.

Exarnple

er r gen
error&x

MACRO
DB
ENDM

In the example above, MASM replaces &x with the value of the actual
parameter passed to the macro errgen. If the macro is called with the
statement

v,x
'Error &y - &x'

wait'

errgen 1, wai t

the macro is expanded to

errorwait DB 'Error 1

t29

Mcrosoft Macro Arsembler Reference Manual

Note

al loc MACRO
IRP
x&&z
ENDM
ENDM

x
z,<L,2,3>
DBz

In this example, the dummy parameter x is replaced immediately when
the macro is called. The dummy parameter z, however, is not replaced
until the IRP directive is processed. This means the parameter is
replaced once for each number in the IRP parameter list. If the macro
is called with

al loc var

the expanded macro will be

varl
var2
var3

DB
DB
DB

1
2
3

8.3.2 Literal-I'ext Operator

Synta,x

ltect>
The literal-text operator directs MASM to treat ter,t as a single literal ele-
ment regardless of whether it contains commas, spaces, or other separators.
The operator is most often used with macro calls and the IRP direitive to
ensure that values in a parameter list are treated as a single parameter.

130

For complex, nested macros, you can use exbra ampersands (&) to delay
the actual replacement of a dummy parameter, ln general, you need to
supply as many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute operator
is used twice with z to make sure its replacement occurs while the IRP
directive is being processed:

The literal text operator can also be used to force MASM to treat special
characters such as the semicolon (;) or the ampersand (&) literally. For
example, the semicolon inside angle brackets (1) becomes a semicolon,
not a comment indicator.

Macro Directives

The literal-character operator forces the assembler Lo trea| character as a
literal character. For example, you can use it to force MASM to treat spe-
cial characters such as the semicolon (;) or the ampersand (&) literally.
Therefore, !; is equivalent to (;).

MASM removes one set of angle brackets each time the parameter is used
in a macro. When using nested macros, you will need to supply as many
sets of angle brackets as there are levels of nesting.

8.3.3 Literal- Character Operator

Syntax

lcharacter

8.3.4 Expression Operator

Syntax

95test

The expression operator (%\ cattses the assembler to Lreat tert as an
expression. MASM compuies the expression's value, using numbers of the
current radix, and replaces tert with this new value. The terl must
represent a valid expression.

The expression operator is typically used in macro calls where the program-
mer needs to pass the result of an expression to the macro instead of to the
actual expression.

131

Microsoft Macro Assembler Reference Manual

Exarnple

printe MACRO
IE2
%ouT
ENDI F
ENDM

msg, num

* &msg&num *
On pass 2 on ly
D.isp l ay message and number

to screen

syml EQU 1oo
sym2 EQU 2AA

printe <sym1 + sym2 = >,%(syml + syfi2)) Macro call

In this example, the macro call

pr.inte <sym1 + sylJt2 - >,%(syli.1 + sym2)

passes the texi, literal syml + sym2 = to the dummy parameter msg. It
passes the value 300 (the result of the expression syml + sym2) to the
dummy parameter num. The result is that MASM displays the message
syml+sym2:3OO when it reaches the macro call during the assembly.
The 95OUT directive, which sends a message to the screen, is described in
Section 9.4 and the IF2 directive is described in Section 7.2.2.

142

8.3.5 Macro Comrnent

Syntax

iitext

A macro comment is any text in a macro definition that does not need to be
copied in the macro expansion. All lecl following the double semicolon (;;)
is ignored by the assembler and will appear only in the macro definition
when the source listing is created.

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in trracro expan-
sions depends on the use of the .LAJ,L, .XAJ,L, and .SALL directives
described in Section 9.11.

